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Something about...

This text contains the general lines of the introductory talks given during the
DAGA seminar at the University of Barcelona, starting from December 2016 (see
www.math.u-bordeaux.fr/~robgualdi/DAGA.html). The priority of the expo-
sitions was to let the audience of graduate students understand the main con-
cepts and ideas appearing in the progress of their colleagues’ theses. No claim
of new results is made. A talk was considered to be successful whenever the
audience could say to have learnt something about their colleagues expertise field,
which justifies the title of the present text.
The talks being aimed to graduate students with an algebraic background, the
classically taught notions in algebra and geometry are assumed as prerequi-
site; anyway, any useful and non-basic definition is recalled and explained. As
a result, the text should be readable and fully understandable at an advanced
bachelor level.
The author of the talk is responsible for the notations, definitions and results
appearing in it.
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1
...heights

by Roberto GUALDI

Motivation

Given f a polynomial with integer coefficients in an arbitrary number of vari-
ables, a classical question in number theory is to know the number of its so-
lutions living in Q or, more generally, in a fixed number field K, which is by
definition a finite field extension of Q. The correct way to attack the problem
(or at least a way that has proved to be fruitful) is to consider the solutions of f
overK as the set ofK-rational points of a suitable compactification of the vari-
ety Z(f) = {f = 0}. The first non-trivial case is the one of a polynomial in two
variables, which defines, after homogenization, a curve in the projective plane.
It is then interesting to be able to answer the following more general question.

Question 1. LetC be a geometrically irreducible1 smooth projective curve over a num-
ber field K. How many K-rational points does C have?

An apparently very different question, but surprisingly deeply related to
the previous one, is the following.

Question 2. Which is naively simpler, 1 or 2016/2017?

Genus of curves. Recall that the genus of a geometrically irreducible smooth
projective curve is defined as the dimension of the space of globally defined 1-
forms on C, that is the space of global sections of the canonical line bundle Ω1

C

1A schemeX over a field k is said to enjoy geometrically a certain property if its base changeXk
over the algebraic closure of k does.
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of C, which is the dual of the tangent line bundle. The genus of a smooth pro-
jective curve C is one of the main ingredients of Riemann-Roch theorem: for
any line bundle L on C, one has that

g(C) = deg(L) + 1− χ(L)

where χ(L) is the Euler characteristic of L, defined in general as

χ(F) =

dimX∑
j=0

(−1)j dimkH
j(X,F)

for a sheaf F on a scheme X over k. In particular, deg
(
Ω1
C

)
= 2g(C)− 2.

Remark. When C is a smooth curve in P2, defined by the homogeneous poly-
nomial f , the genus of C is related to the degree d of f by the formula

g(C) =
(d− 1)(d− 2)

2
=

(
d− 1

2

)
.

Geometry and arithmetic of curves. It is nowadays clear that the answer
to Question 1 lies on a beautiful interplay between the geometrical and the arith-
metical properties of the curve C. It turned out that the genus of the curve
determines the number of rational points it has. In details:

• when g(C) = 0: the curve has either no K-rational points (for example,
the curve x20 + x21 + x22 = 0) or infinitely many of them

• when g(C) = 1: the situation is more delicate. It can happen thatC has no
K-rational points. When it has at least one, C is an elliptic curve over K:
Mordell-Weil theorem (1922) implies then that the set of K-rational points
of C is a finitely generated abelian group, which can even be finite (for
example, in the case of the elliptic curve x0x22 − x31 + px20x1 = 0, with p
congruent to 7 or 11 modulo 16). The problem of determining the rank of
this group (in particular whetherC has finitely or infinitely many rational
points overK) is highly non-trivial and it is the main statement of the Birch
and Swinnerton-Dyer conjecture, nowadays far from being solved

• when g(C) ≥ 2: Faltings’s theorem (1983/1984) asserts that C has finitely
many K-rational points, as conjectured by Mordell in 1922.

Remark. As an application of Faltings’s theorem and the recalled genus-degree
formula, one easily sees that the n-Fermat curve xn1 + xn2 = xn0 only has finitely
manyK-rational points for n ≥ 4. In particular, the equation xn+yn = zn, with
n ≥ 4 has finitely many solutions living in Q. This is almost Fermat last theorem
(an elementary proof of it for the case n = 3 was already known to Euler).
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Complexity of numbers. Regarding Question 2, it seems clear that 1 is a
naively much simpler number than the other one, even if their absolute values
are close. In order to justify this intuitive answer, one needs to formally define
a notion of complexity of algebraic numbers. The theory of heights perfectly
answers this need; moreover, it proves to be a powerful and ubiquitous tool in
number theory, representing, for instance, one of the main instruments for the
proof of Faltings’s theorem.

Adelic fields

The natural setting in which to develop a theory of heights is the one of an adelic
field, which is a field together with a collection of absolute values and certain
additional data.

Absolute values. Fix a fieldK throughout the whole subsection. An abso-
lute value over K is a function | · | : K → R≥0 satisfying the following three
axioms:

(i) |x| = 0 if and only if x = 0K

(ii) |x · y| = |x| · |y|

(iii) |x+ y| ≤ |x|+ |y|.

Whenever | · | satisfies, instead of (iii), the stronger inequality

|x+ y| ≤ max{|x|, |y|}

for every x, y ∈ K, one says that | · | is a non-archimedean absolute value.
Otherwise, | · | is said to be archimedean.

Example. Over every field K there is a non-archimedean absolute value, the
trivial absolute value | · |tr, defined as

|x|tr =

{
0 x = 0K

1 otherwise
.

Example. Over the fieldsQ,R andC the usual (“Euclidean”) absolute value, the
modulus of a number, is an archimedean absolute value, which we will denote
by | · |∞.

Example. Let p be a prime number and consider x ∈ Q. After writing x = pl ·a/b
with a and b both coprime with p and l ∈ Z, set |x|p := p−l. The function | · |p
defines a non-archimedean absolute value over Q, which is called the p-adic
absolute value.
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Places. Every absolute value | · | over K induces a distance, by d(x, y) :=
|x−y|, hence a topology. Two absolute values are called equivalent if they induce
the same topology onK. A class of equivalent absolute values is called a place.
Some elementary computations prove that two absolute values | · |1 and | · |2 are
equivalent if and only if there exists λ ∈ R>0 such that

|x|1 = |x|λ2
for every x ∈ K. In particular, the archimedean and non-archimedean proper-
ties are stable under equivalence of absolute values and it is then meaningful
to speak about archimedean places and non-archimedean places.

Remark. The relation between two equivalent absolute values is a useful tool
to produce absolute values which are equivalent to a given one. Anyway, one
should be careful while performing this operation. Whilst in the case of | · |
being non-archimedean | · |λ is an absolute value for any λ ∈ R>0, this is no
longer true in the archimedean case. Indeed, when | · | is archimedean, | · |λ is
an absolute value for any λ ∈ (0, 1], but the triangular inequality could fail for
λ > 1.

A classical result by Ostrowski describes all the places over the field of ra-
tional numbers.

Theorem 1 (Ostrowski). The only absolute values over Q are, up to equivalence: the
trivial absolute value, the usual Euclidean absolute value and the p-adic absolute values,
with p running in the set of prime numbers.

Adelic fields. Having reviewed the basic definitions and examples related
to absolute values, we can now define the notion of adelic field.

Definition 1. An adelic field is the datum (K, {| · |v, nv}v∈M) of a field K, to-
gether with a collection of placesM overK and the choice, for each place v ∈M,
of an absolute values | · |v in v and of a positive real number nv , satisfying the
following two axioms:

(i) if v is a non-trivial non-archimedean place, then

{log |x|v : x ∈ K×} ' Z

as a group (that is, v is associated to a discrete valuation)

(ii) for every x ∈ K×, |x|v = 1 for all but finitely many v ∈M.

The number nv is often referred to as the weight of the place v. A property
that is often required to hold for adelic fields in the theory of heights is the
following.

Definition 2. An adelic field (K, {| · |v, nv}v∈M) is said to satisfy the product
formula if for every x ∈ K× one has∏

v∈M

|x|nv
v = 1.
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The identity in the previous definition is meaningful since, by the definition
of adelic field, the quantity |x|v equals 1 for almost all v ∈M. Hence, the infinite
product reduces to a finite one. Obviously, the product formula can be written
in the equivalent logarithmic version∑

v∈M

nv · log |x|v = 0.

Proposition 1. Denote by MQ the collection of all places over Q. Then, the datum(
Q, {| · |v, 1}v∈MQ

)
is an adelic field satisfying the product formula, where | · |v are

normalized as in the examples of the previous section.

Proof. It is immediate to verify that
(
Q, {| · |v, 1}v∈MQ

)
is an adelic field. In order

to check that the product formula holds, notice that it is enough to verify it for
prime numbers. Then, for a prime number p, one has∏

v∈MQ

|p|v = |p|tr · |p|p · |p|∞ = p−1 · p = 1,

which concludes the proof.

Another classical example is the one of function fields, as follows.

Example. Let C be a smooth projective curve over a field k. Let K := k(C)
be the function field of the curve, MC the collection of closed points of C. For
every v ∈MC , consider the absolute value

| · |v := c
− ordv(·)
k ,

where ordv is the order of vanishing of a rational function over C at the closed
point v and ck is a constant depending on the base field k (in details, ck is the car-
dinality of k if k is finite, ck = e otherwise). One shows that, with such choices,
(K, {| · |v, |k(v) : k|}v∈MC

) is an adelic field satisfying the product formula.

At last, we investigate the relation between adelic field structures and fi-
nite field extensions. Suppose L/K is a finite field extension. Consider a place
w over L. An absolute value in this equivalence class restricts to an absolute
value over K and then defines a place v over K. Easily, v does not depend
on the choice of the absolute value in w. Moreover, archimedean and non-
archimedean places of L restrict to archimedean and non-archimedean places
of K, respectively. If w restricts to v, one says2 that w divides v and writes w|v.

Proposition 2. Let (K, {| · |v, nv}v∈M) be an adelic field satisfying the product for-
mula. Let L/K be a finite field extension. Then, there exists a canonical adelic field
structure on L, (L, {| · |w, nw}w∈N) which satisfies the following properties:

1. N is the set of places of L which restrict on K to a place in M

2This suggestive name has a classical number theoretical explanation.
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2. whenever w|v, the restriction of | · |w to K coincides with | · |v

3.
∑
w|v nw = nv

4. (L, {| · |w, nw}w∈N) satisfies the product formula.

Remark. The construction in Proposition 2 is quite explicit. For instance, it al-
lows to define a canonical structure of an adelic field with product formula on
any number field, starting from the adelic field structure of Q given in Propo-
sition 1. In details, let K be a number field. The adelic field structure given by
Proposition 2 is (K, {| · |w, nw}w∈N), where N is the collection of all places over
K (for a more specific result, see the discussion about a generalized Ostrowski
theorem here), and for every w ∈ N:

| · |w := |NKw/Qv
(·)|

1
|Kw :Qv|
v

(here the norm of a field extension appears, and the extension Kw/Qv is finite
since Kw/Qv is) and

nw :=
|Kw : Qv|
|K : Q|

.

Canonical height on P1

We now come to the main object of the talk. In order to keep the exposition
as basic as possible, we restrict here to the case of the simplest possible height,
which is the canonical height on P1, also known as the Weil height on P1. This
baby example is anyway already interesting enough: it enjoys useful property,
thought posing non-trivial open problems. We start by giving a general defini-
tion of canonical height over any base adelic field. We will then restrict to the
case of the projective line over Q.

The general case. For a base field K and a finite field extension L of K,
the L-rational points of P1

K will be expressed in homogeneous coordinates as
[x0 : x1] with x0, x1 ∈ L.

Definition 3. Let (L, {| · |w, nw}w∈N) be an adelic field satisfying the product
formula. Let P = [x0, x1] be a L-rational point of P1

L. The canonical height
(also, the Weil height) of P over L is defined as

hL(P ) :=
∑
w∈N

nw log max{|x0|w, |x1|w}.

Remark. The product formula assures that the previous definition does not
depend on the choice of the homogeneous coordinates of P . Indeed, the com-
putation for [x0, x1] and [λx0, λx1] for any λ ∈ L× yields the same value of the
sum defining hL(P ).
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Consider now an adelic field (K, {| · |v, nv}v∈M) satisfying the product for-
mula and fix an algebraic closure K of K. Consider P ∈ P1

K

(
K
)
; this means

that there exists a finite field extension L of K such that P ∈ P1
K(L). Definition

3 allows to define the height of P over L, endowed with the canonical adelic
structure given by Proposition 2. The value of this height does not depend on
the choice of the fieldL. To check this claim, writeP = [x0, x1], with x0, x1 ∈ K.
LetL be any finite field extension ofK such thatP ∈ P1

K(L); thenL ⊇ K[x0, x1].
The canonical adelic structures induced by K on L and K[x0, x1] are compat-
ible in the sense that (L, {| · |w, nw}w∈N) and (K[x0, x1], {| · |v, nv}v∈M) satisfy
the first three properties of the statement of Proposition 2. Then:

hL(P ) =
∑
w∈N

nw log max{|x0|w, |x1|w} =
∑
v∈M

∑
w∈N
w|v

nw log max{|x0|w, |x1|w}

=
∑
v∈M

∑
w|v

nw

 log max{|x0|v, |x1|v} =
∑
v∈M

nv log max{|x0|v, |x1|v}

= hK[x0,x1](P ).

This computation allows to define a notion of canonical height over the K-
points of P1

K .

Definition 4. Let (K, {| · |v, nv}v∈M) be an adelic field satisfying the product
formula. Let P be a K-rational point of P1

K . The canonical height (or the Weil
height) of P is defined as hK(P ) := hL(P ), where L is any finite field exten-
sion of K such that P is a L-rational point of P1

K , and L is endowed with the
canonical adelic structure of Proposition 2.

The rational case. We consider now the case of the field Q, with the adelic
structure given in Proposition 1, which satisfies the product formula. Definition
4 gives a notion of height of algebraic points over the projective line. Including
Q into P1

Q
(
Q
)

via
α 7→ [1 : α]

allows to define the height of an algebraic number, which is an element of Q.
Explicitely, for every α ∈ Q one has, directly by Definition 4:

h(α) =
∑
w∈N

nv log max{1, |α|v},

where (K, {| · |v, nv}v∈M) is the canonical adelic structure described above of
any number field K containing α. In particular:

• h(α) ≥ 0 for every α ∈ Q

• h(αq) = q · h(α) for every α ∈ Q and q ∈ Q≥03.
3It is not difficult to show that, more generally, h(αq) = |q| · h(α) for every α ∈ Q and q ∈ Q.

10



In a certain sense, h(α) measures the arithmetic complexity of α, as it can be seen
in the case of α ∈ Q.

Proposition 3. Suppose a
b ∈ Q, with gcd(a, b) = 1. Then

h
(a
b

)
= max{log |a|, log |b|}.

Proof. One can use Definition 3 with respect to the base field Q. Then:

h
(a
b

)
= h

([
1 :

a

b

])
= h([b : a]) =

∑
v∈MQ

log max{|a|v, |b|v}.

Let p be a prime number. Since a and b are integer numbers, they have p-adic
absolute value at most equal to 1. The fact that a and b are coprime implies
that at least one of them has p-adic absolute value exactly equal to 1. Hence, for
every non-archimedean absolute value v over Q, max{|a|v, |b|v} = 1. So:

h
(a
b

)
= log max{|a|∞, |b|∞} = max{log |a|, log |b|}.

Example. Proposition 3 allows us to answer Question 2 in a satisfactory way. In
fact, it turns out that h(1) = 0, while h (2016/2017) = log(2017). Hence, 1 has a far
lower height than 2016/2017, justifying the intuitive idea of its lower arithmetic
complexity.

The following theorem suggests how the theory of heights can help for finite-
ness result as in the case of the answer to Question 1. Recall that the degree of
an algebraic number α is defined as the degree of its minimal polynomial over
Q.

Theorem 2 (Northcott’s property). There are only finitely many algebraic numbers
with bounded degree and bounded height.

In other words, for every pair of constants A,B ∈ R≥0, the set{
α ∈ Q : deg(α) ≤ A and h(α) ≤ B

}
is finite. When A = 1, this fact is a trivial consequence of Proposition 3.

Lehmer’s problem. Since the height of an algebraic number measures its
arithmetic complexity, it is natural to ask which are the “simplest” elements
of Q. The value h(α) being non-negative for all α ∈ Q and being h(1) = 0,
the question is equivalent to the description of the family of algebraic numbers
with height equal to zero.

Theorem 3 (Kronecker). The height of α ∈ Q× is 0 if and only if α is a root of unity.
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Proof. If α is a root of unity, then there exists n ∈ N for which αn = 1. Basic
properties of the height imply that:

n · h(α) = h(αn) = h(1) = 0,

hence h(α) = 0.
Conversely, suppose that h(α) = 0. For all k ∈ N, one has that αk ∈ Q[α] and
h(αk) = k · h(α) = 0. As a consequence of Northcott’s property, the set

{1, α, α2, . . . }

is finite. Then, there exist k, l ∈ N such that αk = αl, implying that α is a root
of unity.

Having understood which are the algebraic numbers with height equal to
0, the next natural question is the following: how close to 0 can the height of
a non-zero algebraic number be, if one excludes roots of unity? The answer is
simple: it can be arbitrarely small, as the following example shows.

Example. For every k ∈ N, the height of k
√

2 is

h(
k
√

2) =
1

k
h(2) =

1

k
log(2),

which tends to 0 as k grows. Remark that the set { k
√

2}k∈N is infinite with
bounded height; of course, it does not contradict Northcott’s property, as the
degree of the algebraic numbers k

√
2 is not bounded.

One can then refine the question to the following one.

Question 3. How small can the quantity deg(α) ·h(α) be for α ∈ Q×, if one excludes
roots of unity?

This apparently harmless question is still without answer, even if progresses
have been made towards the following conjecture.

Conjecture (Lehmer). There exists a constant c > 0 such that deg(α) · h(α) ≥ c for
all α ∈ Q× \ {roots of unity}.

Despite the long time passed since the conjecture was formulated in 1933,
the candidate for the constant c is still the one suggested by Lehmer himself, i.e.
log(1.17628081 . . . ), which is reached by any root of the polynomial

x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 14.

4The best results known today are the following: C.J. Smyth proved that every root of a non-
reciprocal polynomial gives a higher value than the conjectured one. In a different direction, E.
Dobrowolski proved that the quantity deg(α) · h(α) cannot decrease to 0 too fast as d = deg(α)

grows (the quantity is bounded below by a term in (log log d/log d)3).
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2
...idèles

by Eduardo SOTO

Motivation

A central object of study in number theory is the understanding of number
fields, which are finite field extensions of Q. The finite field extensions which
are better understood are the ones which can be studied via Galois theory. Re-
call that a finite field extension is said to be a Galois extension if it is normal
and separable. In the case of number fields, the separability assumption is auto-
matically satisfied (this is a more general result for fields of characteristic zero);
as a consequence, a finite field extension K of Q is Galois if and only it is nor-
mal, that is if and only if K is the splitting field over Q of a polynomial with
coefficients in Q. This means that there exists a polynomial f with rational co-
efficients such thatK = Q(α1, . . . , αn), where α1, . . . , αn are all the roots of f in
some algebraic closure ofQ. The Galois group of the extensionK/Q is defined
as

GalQ(K) := {σ ∈ Aut(K) : σ|Q = idQ},

Aut(K) being the group of field isomorphisms of K, together with the compo-
sition of morphism. It represents a tremendously useful tool to study Galois
extensions, thanks to Galois main theorem. The cardinality of GalQ(K) coin-
cides with the degree of the extension K/Q.

Cyclotomic extensions. Among all finite field extensions of Q, a special
role is played by the so-called cyclotomic extensions, which we introduce here.
Let n be a positive integer number, denote by µn the group of n-th roots of
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unity and by ζn a primitive n-th root of unity (that is, a generator of the group
µn).

Definition 1. The number field Q[ζn] is called a cyclotomic field extension of
Q.

The extension Q[ζn]/Q is a Galois extension (Q[ζn] is the splitting field of
f = Tn − 1 over Q) and it has degree φ(n), the Euler function of n. Moreover,
it is not difficult to verify that

GalQ(Q[ζn]) ' (Z/nZ)×.

The isomorphism is described as follows: for everyσ in the Galois group, σ(ζn) =
ζln for some l ∈ {1, . . . , n−1}, not depending on the choice of the primitive root
ζn; send σ to such l.

Abelian extensions. A Galois extension K/Q is said to be abelian if the
Galois group GalQ(K) is an abelian group. The description of the Galois group
of the cyclotomic extension in the previous paragraph shows that each cyclotomic
extension ofQ is abelian. Also, each quadratic extension ofQ is abelian; indeed, every
degree two extension is Galois and its Galois group has cardinality 2: it has to
be the cyclic group of two elements.
Of course, there exist extensions of Q which are not abelian, as shown in the
following example.

Example. Consider the polynomial f = T 3−2. LetK be the splitting field of f
over Q, that isK = Q

[
3
√

2, ζ3
]
, where ζ3 denotes a primitive third root of unity.

The field extensionK/Q is a Galois extension of degree 6. HenceG := GalQ(K)
is a finite group of order 6. The group G is not abelian; indeed, denote by σ, τ
the two elements of G acting on the Q-generators of K as follows:

σ :
3
√

2 7→ 3
√

2

ζ3 7→ ζ23

and

τ :
3
√

2 7→ 3
√

2 · ζ3
ζ3 7→ ζ3

One easily checks that στ 6= τσ (indeed, στ = τ2σ). A simple computation
shows that

G = 〈σ, τ | σ2, τ3, (στ)2〉 = S3,

the 3-dihedral group, which is the smallest non abelian group.

Describing all Galois extensions of Q is a difficult task. The situation is
clearer for quadratic extensions, which are automatically Galois extensions.
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Proposition 1. Any quadratic extension ofQ is included in a cyclotomic field extension
of Q.
Proof. Every quadratic extension of Q is of the form Q[

√
n], for some n ∈ Z

squarefree. We claim that for every n ∈ Z one has

Q
[√
n
]
⊆ Q

[
ζ4|n|

]
.

In order to prove the previous inclusion, let’s start with the case of n = p a
prime positive number. Denoting by

(
a
p

)
the Legendre symbol of a over p, one

considers

α :=

p−1∑
j=1

(
j

p

)
ζjp ∈ Q [ζp] .

Some computations show that α2 =
(−1
p

)
·p, from which α ∈ µ4 ·

√
p (recall that

µ4 = {±1,±i}). Hence,
√
p ∈ µ4 · α ⊆ Q [ζ4, ζp] ⊆ Q [ζ4p] .

The same argument proves that
√
−p ∈ Q [ζ4p]. Regarding the general case,

n = ±p1 · · · · · pl (it is squarefree), from which
√
n =
√
±p1
√
p2 · · · · ·

√
pl ∈ Q [ζ4, ζp1 , . . . , ζpl ] ⊆ Q [ζ4p1·····pl ] ⊆ Q

[
ζ4|n|

]
,

completing the proof.

The previous Proposition is only the tip of the iceberg. The following more
general result holds, concerning abelian extensions of Q.
Theorem 1 (Kronecker-Weber). Every finite Galois abelian extension of Q is con-
tained in some cyclotomic extension of Q.

The previous theorem, whose first complete proof is due to Hilbert (1896),
underlines the idea that cyclotomic field extensions play a prominent role among
the abelian field extensions ofQ. Moreover, using Galois main theorem, one can
classify abelian extensions of Q by looking at subgroups of (Z/nZ)× for n ∈ N,
which is the Galois group of the n-cyclotomic extension of Q.

A question. The content of Kronecker-Weber theorem is the possibility of
generating every abelian extension of Q using cyclotomic numbers. What hap-
pens for abelian extensions of a general number field? The following question
is then natural.
Question 1. How can one classify every finite Galois abelian extensions of a number
field K? Otherwise said, which are the algebraic numbers needed to construct all finite
Galois abelian extensions of K?

Though its simple formulation, the problem is far from being fully resolved.
Some progresses have been made since 1900, when Hilbert included the ques-
tion in his list of 23 problems. The language of idèles offers a useful tool to
develop a class field theory over general number fields, helping in the under-
standing of the posed question.
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Basics in algebraic number theory

We recall in this section some basic definitions and results that are necessary to
introduce the machinery of idèles.

Places over number fields. A place over a number field K is an equiva-
lence class of absolute values, where two absolute values are said to be equiva-
lent if they induce the same topology on K. The family of places over a given
number field is perfectly understood. First of all, one distinguishes between
non-archimedean absolute values, the ones satisfying the ultrametric property |x+
y| ≤ max{|x|, |y|} for every x, y ∈ K, and archimedean absolute values, the ones
which does not. The property of being archimedean or not is stable under
equivalence of absolute values and then induces a distinction between archimedean
(or infinite) places and non-archimedean (or finite) places. We next describe the full
picture.

Infinite places. For a fixed number field K, denote by SK the set of the
endomorphisms σ : K → C. An element σ ∈ SK is said to be a real embedding
if σ(K) ⊆ R, a complex embedding otherwise.

Example. Let K := Q[T ]/
(
T 3 − 2

)
. It is a number field of degree 3 over Q. It

admits three embeddings: a real embedding, sending T to 3
√

2, and two com-
plex embeddings, sending T to 3

√
2 · ζ3 or to 3

√
2 · ζ23 respectively. Notice that the

two complex embedding are obtained one from the other after composing with
the complex conjugation.

The observations in the previous example still holds in the general case. The
complex embeddings of a number field K always come in pairs, and one is the
complex conjugate of the other. This means that if σ is a complex embedding
of K, then σ := J ◦ σ is such as well, where J denotes the complex conjuga-
tion. Moreover, if r1 and r2 denote the number of real embeddings of K and
the number of pairs of complex embeddings of K, respectively, the following
equality holds:

[K : Q] = r1 + 2r2.

Denote now by |·| the usual absolute value inC. It is clear that every embed-
ding σ of K into C gives an archimedean absolute value on K by | · |σ := |σ(·)|.
Also, if σ and σ are conjugate complex embeddings, they produce the same ab-
solute value overK. As a result, this construction provides r1+r2 archimedean
absolute values over K.

Dedekind domains and finite places. Given an extension of rings A ⊆ B,
one says that the integral closure of A into B is the set of elements in B which
satisfy a integral relation overA, that is the set of elements ofB which are roots

16



of a monic polynomial with coefficients in A. This is the straightforward gen-
eralization of the notion of algebraic closure of a field inside another field. A
domain A is said to be integrally closed if it coincides with its integral closure in
its field of fractions.
Definition 2. A Dedekind domain is an integrally closed, Noetherian domain
with Krull dimension one, that is, it is not a field and every non-zero prime
ideal is maximal.

The notion of Dedekind domain can be considered as the “globalization”
of the notion of discrete valuation rings. In fact, a noetherian domain is a
Dedekind domain if and only if the localization at each maximal ideal is a DVR.
A peculiar and useful properties of Dedekind domains is the fact that any non-
zero proper ideal admits a unique decomposition into a product of prime ideals.

The main number theoretic interest into Dedekind domains is the following.
For a number fieldK, the ring of integers ofK is defined as the integral closure
of Z into K, that is the set of elements in K satisfying an integral relation over
Z. It is commonly denoted by OK .
Proposition 2. The ring of integers OK of a number field K is a Dedekind domain.

A direct consequence of the previous proposition is that any non-zero proper
ideal of OK factors into a product of prime ideals in OK . Using this property,
any non-zero prime ideal of OK gives a non-archimedean absolute value over
K as follows. Fix a non-zero prime ideal p of OK . Its norm is defined to be
N(p) = |OK/p|. Consider an element x ∈ OK \ {0} and let (x) = xOK be
the corresponding non-zero principal ideal in OK . This ideal admits a unique
factorization into prime ideals of OK , that is

xOK = pe · pe11 · · · · · p
el
l .

Define
‖x‖p := N(p)−e.

One can extend this function to K by setting ‖0‖p := 0 and ‖a/b‖p := ‖a‖p/‖b‖p.
This is easily verified to be a non-archimedean absolute value over K. One
remarks that

{x ∈ K : ‖x‖p ≤ 1} = OK,p
(the localization of OK at p); it is a local domain with maximal idealMK,p =
{x ∈ K : ‖x‖p < 1}.

Generalized Ostrowski theorem. A classical result by Ostrowski (1916)
states that the only absolute values on Q are, up to equivalence: the trivial ab-
solute value, the Euclidean absolute value and the p-adic absolute values, for p
prime. A similar version for number fields holds.
Theorem 2 (Generalized Ostrowski). Let K be a number field. The only absolute
values overK are, up to equivalence: the trivial absolute value, the archimedean absolute
values coming from embeddings of K in C and the non-archimedean absolute values
associated to non-zero prime ideals of OK .
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The language of idèles

For a number field K, denote by MK the family of places over K. For a given
place v of K, let Kv denote its v-completion and by OK,v the ring of integers of
Kv .

Definition 3. The group of idèles of a number field K is defined as the set

JK :=

{
(xv)v ∈

∏
v∈MK

Kv : xv ∈ O×K,v for almost all v ∈MK

}
,

together with componentwise multiplication.

Remark first of all that the defined operation is internal. Indeed, whenever
xv, yv lie in O×K,v, so does xv · yv . Moreover, no dependence on the choice of an
absolute value for the given place appears in the definition.

TO BE CONTINUED
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